State of California CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD LOS ANGELES REGION

MONITORING AND REPORTING PROGRAM NO.<u>CI 7093</u> for NORTHROP CORPORATION, AIRCRAFT DIVISION (Newbury Park Facility) (CA0062588)

I. REPORTING REQUIREMENTS

The Discharger shall implement this monitoring program from the effective date of this Order. The first monitoring report under this program is due by October 15, 2000, and will cover the month of September 2000.

Monitoring reports shall be submitted by the dates in the following schedule:

Reporting Period	Report Due
January - March	April 15
April - June	July 15
July - September	October 15
October - December	January 15
Annual Summary Report	March 1

If there is no discharge during any reporting period, the report shall so state.

The Annual Summary Report shall contain both tabular and graphical summaries of the monitoring data obtained during the previous year. In addition, the Discharger shall discuss the compliance record and the corrective actions taken or planned which may be needed to bring the discharge into full compliance with the waste discharge requirements.

II. MONITORING REQUIREMENTS

- A. The monitoring reports shall specify the USEPA analytical method used, the Method Detection Limit (MDL) and the Minimum Level (ML) for each pollutant. For the purpose of reporting compliance with numerical limitations, performance goals, and receiving water limitations, analytical data shall be reported with one of the following methods, as the case may be:
 - 1. An actual numerical value for sample results greater than or equal to the ML; or,
 - 2. "Detected, but Not Quantified (DNQ)" if results are greater than or equal to the laboratory's MDL but less than the ML; or,

August 1, 2000 Revised: August 16, 2000 3. "Not-Detected (ND)" for sample results less than the laboratory's MDL with the MDL indicated for the analytical method used.

The MLs are those published by the State Water Resources Control Board in the Policy for the Implementation of Toxics Standards for Inland Surface Waters, Enclosed Bays, and Estuaries of California, March 2, 2000 (SIP).

- B. The ML employed for an effluent analysis shall be lower than the permit limit(s) established for a given parameter, unless the Discharger can demonstrate that a particular ML is not attainable and obtains approval for a higher ML from the Executive Officer. At least once a year, the Discharger shall submit a list of the analytical methods employed for each test and associated laboratory quality assurance/quality control procedures.
- C. Quarterly analyses shall be performed during the months of February, May, August and November. Semiannual analyses shall be performed during the months of February and August. Annual analyses shall be performed during the month of February. Results of quarterly, semiannual and annual analyses shall be reported in the appropriate quarterly monitoring report.

III. MONITORING PROGRAM

Effluent Monitoring Program

- 1. This Regional Board shall be notified in writing of any change in the sampling stations once established or in the methods for determining the quantities of pollutants in the individual waste streams
- 2. The following shall constitute the effluent monitoring program for the final effluent:

CTR#	CONSTITUENT	Units	Type of sample	Minimum Frequency of analysis
	Total waste flow	gal/day		Weekly
	Temperature	°F	Grab	Monthly
	рН	pH units	Grab	Monthly
	Turbidity	NTU	Grab	Monthly
	Hardness	mg/L	Grab	Monthly
	Settleable solids	ml/L	Grab	Quarterly
	Suspended solids	mg/L	Grab	Quarterly
	Oil and grease	mg/L	Grab	Quarterly
	BOD ₅ 20 ⁰ C	mg/L	Grab	Quarterly
	Total dissolved solids	mg/L	Grab	Quarterly
	Sulfate	mg/L	Grab	Quarterly
	Chloride	mg/L	Grab	Quarterly
	Boron	mg/L	Grab	Quarterly
	Nitrate + Nitrite (as Nitrogen)	mg/L	Grab	Quarterly

CTR#	CONSTITUENT	Units	Type of	
			sample	Frequency of
	47			analysis
	Residual chlorine ^{1/}	mg/L	Grab	Quarterly
	Sulfides	mg/L	Grab	Quarterly
5b	Chromium VI	μg/L	Grab	Monthly
6	Copper	μg/L	Grab	Monthly
8	Mercury	μg/L	Grab	Monthly
10	Selenium	μg/L	Grab	Quarterly
11	Silver	μg/L	Grab	Monthly
19	Benzene	μg/L	Grab	Monthly
21	Carbon tetrachloride	μg/L	Grab	Monthly
23	Dibromochloromethane	μg/L	Grab	Monthly
27	Dichlorobromomethane	μg/L	Grab	Monthly
28	1,1-Dichloroethane	μg/L	Grab	Quarterly
29	1,2-Dichloroethane	μg/L	Grab	Monthly
30	1,1-Dichloroethylene	μg/L	Grab	Monthly
33	Ethylbenzene	μg/L	Grab	Monthly
38	Tetrachloroethylene	μg/L	Grab	Monthly
39	Toluene	μg/L	Grab	Monthly
41	1,1,1-Trichloroethane	μg/L	Grab	Quarterly
44	Vinyl chloride	μg/L	Grab	Monthly
126	Toxaphene	μg/L	Grab	Semiannually
	Xylene	μg/L	Grab	Quarterly
	Phenolic compounds (chlorinated)	μg/L	Grab	Quarterly
	Methyl ethyl ketone	μg/L	Grab	Quarterly
	Toxicity – Acute ^{2/}	% survival	grab	Annually 3/

- 1/ A statement that no chlorine was used may be submitted in lieu of an analysis.
- Acute toxicity testing shall be conducted by the method specified in "Methods for Measuring Acute Toxicity of Effluents to Freshwater and Marine Organisms" (September 1991, EPA/600/4-90/027). Submission of bioassay results should include the information noted on pages 70-73 of the "Methods". The fathead minnow (<u>Pimephales Promelas</u>) shall be used as the test species.
- 3/ If the result of the annual toxicity test results in non-compliance with the limitation, the frequency of analysis shall increase to monthly until at least three consecutive test results have been obtained and full compliance with Effluent Limitation I-C has been demonstrated, after which the frequency of analysis shall revert to annually. Results of toxicity tests shall be included in the first monitoring report following sampling.

4. <u>Interim Effluent Monitoring Program</u>

In accordance with the SIP, the Discharger shall conduct effluent monitoring for the following toxic pollutants. The monitoring shall continue until April 2003 or until ordered otherwise by the Regional Board:

a. 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TCDD or Dioxin) Equivalents:

Isomer Group	Toxicity Equivalence Factor (TEF)	Frequency of Monitoring
2,3,7,8-tetra CDD	1.0	Once per dry season and once per wet season
1,2,3,7,8-pentaCDD	1.0	Once per dry season and once per wet season
1,2,3,4,7,8-HexaCDD	0.1	Once per dry season and once per wet season
1,2,3,6,7,8-HexaCDD	0.1	Once per dry season and once per wet season
1,2,3,7,8,9-HexaCDD	0.1	Once per dry season and once per wet season
1,2,3,4,6,7,8-HeptaCDD	0.01	Once per dry season and once per wet season
octaCDD	0.0001	Once per dry season and once per wet season
2,3,7,8-Tetra CDF	0.1	Once per dry season and once per wet season
1,2,3,7,8-PentaCDF	0.05	Once per dry season and once per wet season
2,3,4,7,8-PentaCDF	0.5	Once per dry season and once per wet season
1,2,3,4,7,8-HexaCDF	0.1	Once per dry season and once per wet season
1,2,3,6,7,8-HexaCDF	0.1	Once per dry season and once per wet season
1,2,3,7,8,9-HexaCDF	0.1	Once per dry season and once per wet season
2,3,4,6,7,8-HexaCDF	0.1	Once per dry season and once per wet season
1,2,3,4,6,7,8-HeptaCDF	0.01	Once per dry season and once per wet season
1,2,3,4,7,8,9-HeptaCDF	0.01	Once per dry season and once per wet season
octaCDF	0.0001	Once per dry season and once per wet season

The Discharger shall use the appropriate Toxicity Equivalence Factor (TEF) to determine Toxic Equivalence (TEQ). Where TEQ equals the product between each of the 17 individual congeners' (i) concentration analytical result (C_i) and their corresponding Toxicity Equivalence Factor (TEF_i)., (i.e., TEQ_i = C_i x TEF_i). Compliance with the Dioxin limitation shall be determined by the summation of the seventeen individual TEQs, or the following equation :

b. Other toxics:

CTR#	Constituent	Units	Type of	Minimum
			sample	Frequency of
				Analysis
36	Methylene chloride	μg/L	Grab	Quarterly

5. Interim Receiving Water Monitoring

In accordance with SIP and to facilitate the completion of the RPAs, the Discharger shall monitor the following constituents for a duration of three years or until ordered otherwise by the Regional Board.

a. Monitoring Stations:

Background (B) concentrations of the receiving water shall be obtained from South Branch Arroyo Conejo, at a point upstream of its confluence with the unnamed tributary to which Northrop discharges.

b. Monitoring Program:

CTR#	Constituent	Units	Type of	Minimum
			sample	Frequency of
			-	Analysis
1	Antimony	μg/L	Grab	Semiannually
12	Thallium	μg/L	Grab	Semiannually
16	2,3,7,8-TCDD (Dioxin)	μg/L	Grab	Semiannually
18	Acrylonitrile	μg/L	Grab	Semiannually
20	Bromoform	μg/L	Grab	Semiannually
31	1,2-Dichloropropane	μg/L	grab	Semiannually
36	Methylenechloride	μg/L	Grab	Semiannually
37	1,1,2,2-Tetrachloroethane	μg/L	Grab	Semiannually
42	1,1,2-Trichloroethane	μg/L	Grab	Semiannually
52	3-Methyl-4-chlorophenol	μg/L	Grab	Semiannually
53	Pentachlorophenol	μg/L	Grab	Semiannually
59	Benzidine	μg/L	Grab	Semiannually
60	Benzo(a)Anthracene	μg/L	Grab	Semiannually
61	Benzo(a)Pyrene	μg/L	Grab	Semiannually
62	Benzo(b)Fluoranthene	μg/L	Grab	Semiannually
63	Benzo(ghi)Perylene	μg/L	Grab	Semiannually
64	Benzo(k)Fluoranthene	μg/L	Grab	Semiannually
65	Bis(2-Chloroethoxy)Methane	μg/L	Grab	Semiannually
66	Bis(2-Chloroethyl)Ether	μg/L	Grab	Semiannually
73	Chrysene	μg/L	Grab	Semiannually
74	Dibenzo(a,h)Anthracene	μg/L	Grab	Semiannually
78	3,3'-Dichlorobenzidine	μg/L	Grab	Semiannually
82	2,4-Dinitrotoluene	μg/L	Grab	Semiannually
85	1,2-Diphenylhydrazine	μg/L	Grab	Semiannually
88	Hexachlorobenzene	μg/L	Grab	Semiannually
89	Hexachlorobutadiene	μg/L	Grab	Semiannually
91	Hexachloroethane	μg/L	Grab	Semiannually

CI-7093

CTR#	Constituent	Units	Type of	Minimum
			sample	Frequency of
				Analysis
92	Indeno(1,2,3-cd)Pyrene	μg/L	Grab	Semiannually
93	Isophorone	μg/L	Grab	Semiannually
96	N-Nitrosodimethylamine	μg/L	Grab	Semiannually
97	N-Nitrosodi-n-Propylamine	μg/L	Grab	Semiannually
98	N-Nitrosodiphenylamine	μg/L	Grab	Semiannually
102	Aldrin	μg/L	Grab	Semiannually
107	Chlordane	μg/L	Grab	Semiannually
108	4,4'-DDT	μg/L	Grab	Semiannually
109	4,4'-DDE	μg/L	Grab	Semiannually
110	4,4'-DDD	μg/L	Grab	Semiannually
111	Dieldrin	μg/L	Grab	Semiannually
117	Heptachlor	μg/L	Grab	Semiannually
118	Heptachlorepoxide	μg/L	Grab	Semiannually
119-125	Polychlorinated biphenyls (PCBs)	μg/L	Grab	Semiannually
126	Toxaphene	μg/L	Grab	Semiannually
	Hardness	mg/l	Grab	Monthly

Ordered by:		Date: August 31, 2000
	Dennis A. Dickerson	
	Executive Officer	

/AVCA